The Decimal to Fraction Calculator converts the decimal number to a fraction or a mixed number. The repeating and non-repeating fractions are converted simultaneously, simply enter how many decimals are in the repeated fraction.

## How to Add Repeated Decimal Digit?

- For a repeated decimal like 0.5555… where the 5 repeats continuously, since 5 is the one trailing decimal place that repeats, simply enter 1 for the decimal place to repeat.
- For a repeating decimal like 0.353535… where 35 repeats itself forever, enter 0.35, and since 35 is the only two trailing decimal places, enter 2 for the decimal places to repeat.
- For a repeating decimal like 0.967142967142967142.... where 967142 repeats itself forever, enter 967142, and since 967142 is the only six trailing decimal places, enter 6 for the decimal places to repeat.

Adding decimals with repeating or non-terminating decimals can be a difficult task. But this decimal to fraction calculator can do it for you accurately in moments.

## Negative Decimal to Fractions:

- Just remove the (-) sign from the decimal place value
- Apply the conversion on the positive value
- Apply the the (-) sign to the fraction
- For a = b, then -a = -b

## How to Convert Decimal to Fraction?

Convert into a fraction of 2.625

Rewrite the decimal place number

**Step 1:**

Divide it by 1:

2.625 changed into 2.625 / 1

**Step 2:**

Multiply the numbers by 1000

Decimal is 3 digits.

**Step 3:**

Eliminate the decimal

2.625 / 1 ×1000 / 1000 = 2625 / 1000

**Step 4:**

Find GCF for both numbers.

GCF = 125

**Step 5:**

Divide both numbers by the GCF

2625÷125 / 1000÷125

= 21 / 8

**Step 6:**

21 / 8 improper fraction simplify

21 / 8 = 2(5 / 8)

**Step 7:**

Fraction to decimal conversion is

2.625 = 2(5 / 8)

## Convert Repeating Decimal Number:

Let's solve “2.666” a repeated decimal number

**Step 1:**

In the equation,

Repeated decimal number = x.

Equation for repeated decimal number

1: X=2.666------------- (Eq1)

**Step 2:**

Count the digits that represent the decimal.

Repeated number y = 3

**Step 3:**

In the 3rd step:

Both sides of (Eq1) multiplied by 1000

1000X =2666.666 ------------- (Eq2)

**Step 4:**

Subtract from (Eq1) by (Eq2)

1000x = 2666.666 – x = 2.666

999x = 2664

**Step 5:**

The calculations for x

X = 2664 / 999

**Step 6:**

Find the GCF.

2664÷333 / 999÷333 = 83

**Step 7:**

Improper fraction

Improper fraction =2(2 / 3)

## How to Use Our Decimal to Fraction Calculator?

- Enter the decimal & repeating digits in given fields
- Tap '
**Calculate'**& this fraction to decimal converter will give you equivalent fraction (or mixed number) to the entered decimal value

## Conversion Table

Decimal | Fraction |
---|---|

0.00001 | 1/100000 |

0.0001 | 1/10000 |

0.001 | 1/1000 |

0.01 | 1/100 |

0.08333333 | 1/12 |

0.09090909 | 1/11 |

0.1 | 1/10 |

0.11111111 | 1/9 |

0.125 | 1/8 |

0.14285714 | 1/7 |

0.16666667 | 1/6 |

0.2 | 1/5 |

0.22222222 | 2/9 |

0.25 | 1/4 |

0.28571429 | 2/7 |

0.3 | 3/10 |

0.33333333 | 1/3 |

0.375 | 3/8 |

0.4 | 2/5 |

0.42857143 | 3/7 |

0.44444444 | 4/9 |

0.5 | 1/2 |

0.55555555 | 5/9 |

0.57142858 | 4/7 |

0.6 | 3/5 |

0.625 | 5/8 |

0.66666667 | 2/3 |

0.7 | 7/10 |

0.71428571 | 5/7 |

0.75 | 3/4 |

0.77777778 | 7/9 |

0.8 | 4/5 |

0.83333333 | 5/6 |

0.85714286 | 6/7 |

0.875 | 7/8 |

0.88888889 | 8/9 |

0.9 | 9/10 |

1.1 | 11/10 |

1.2 | 6/5 |

1.25 | 5/4 |

1.3 | 13/10 |

1.4 | 7/5 |

1.5 | 3/2 |

1.6 | 8/5 |

1.7 | 17/10 |

1.75 | 7/4 |

1.8 | 9/5 |

1.9 | 19/10 |

2.5 | 5/2 |